Annihilation in $B o M_1 M_2$

Zoltan Ligeti

Capri, May 30, 2006

- Introduction
- SCET and the "zero-bin"
 A new approach to factorization
 [Manohar & Stewart hep-ph/0605001]
- Factorization for weak annihilation
 [Arnesen, ZL, Rothstein, Stewart, hep-ph/0606nnn]

Motivation

- Many observables sensitive to NP can we disentangle from hadronic physics?
 - $B \to \pi\pi, K\pi$ branching ratios and CP asymmetries (related to α, γ in SM)
 - Transverse polarization in charmless $B \rightarrow VV$ decays
 - α from $B \to \pi\pi$ using SCET vs. α from CKM fit

Dozens, if not hundreds of papers... (2σ -type effects at present)

 Various power suppressed contributions to amplitudes have been argued to be large, and often described by complex parameters

E.g., "annihilation" and "chirally enhanced" terms

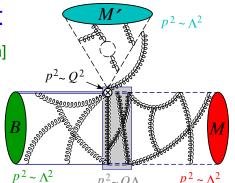
- First derive correct expansion in $m_b \gg \Lambda_{\rm QCD}$ limit, then worry about predictions
 - Need to test accuracy of expansion (even in $B \to \pi\pi$, $|\vec{p}_q| \sim 1 \, {\rm GeV}$)
 - Sometimes model dependent additional inputs needed

Charmless $B \to M_1 M_2$ (a month ago)

Some (dis)agreements about implications of heavy quark limit

[Bauer, Pirjol, Rothstein, Stewart; Chay, Kim; Beneke, Buchalla, Neubert, Sachrajda]

$$egin{aligned} A &= A_{car{c}} + N \left[f_{M_2} \, \zeta^{BM_1} \! \int \! \mathrm{d}u \, T_{2\zeta}(u) \, \phi_{M_2}(u)
ight. \ &+ f_{M_2} \! \int \! \mathrm{d}z \mathrm{d}u \, T_{2J}(u,z) \, \zeta_J^{BM_1}(z) \, \phi_{M_2}(u) + (1 \leftrightarrow 2)
ight] \end{aligned}$$



- $\zeta_J^{BM_1} = \int dx dk_+ J(z, x, k_+) \phi_{M_1}(x) \phi_B(k_+)$ also appears in $B \to M_1$ form factors \Rightarrow Relations to semileptonic decays do not require expansion in $\alpha_s(\sqrt{\Lambda Q})$
- Charm penguins: suppression of long distance part argued, not proven Lore: "charming penguins", "long distance charm loops", " $D\overline{D}$ rescattering" all related (unknown) physics, could yield strong phases, etc. [Ciuchini et al.; ...]
- SCET: fit both ζ 's and ζ_J 's, calculate T's; QCDF: fit ζ 's, use factorization to calculate $\zeta_J \sim \phi_B \phi_M$; PQCD: k_\perp dependent soft form factor is suppressed

SCET & zero-bin

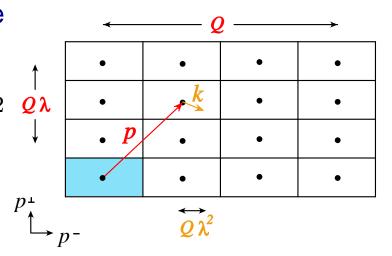
HQET vs. SCET

HQET: nonperturbative interactions do not change four-velocity of heavy quark $p_b^\mu = m_b v^\mu + k^\mu \text{ — once we fix } v \text{, superselection rule; } v \text{ label, } k \text{ residual momenta}$ $b(x) = \sum_v e^{-im_b v \cdot x} \left[\frac{1}{2} (1 + \psi) \underbrace{h_v^{(b)}(x)}_{\text{lorge}} + \frac{1}{2} (1 - \psi) \underbrace{\widetilde{h}_v^{(b)}(x)}_{\text{email}} \right]$

• SCET: light-cone momentum of collinear partons change via $\mathcal{O}(1)$ interactions

Collinear quark in n direction: $p^- = \bar{n} \cdot p$ and p_\perp are labels, but no superselection rule (label conserv.)

Need multiple fields to describe same particle



Minimal SCET details

• Effective theory for processes involving energetic hadrons, $E \gg \Lambda$

[Bauer, Fleming, Luke, Pirjol, Stewart, + . . .]

Introduce distinct fields for relevant degrees of freedom, power counting in λ

modes	fields	$p = (+, -, \bot)$	p^2	SCET _I : $\lambda = \sqrt{\Lambda/E}$ — jets $(m{\sim}\Lambda E)$
collinear	$\xi_{n,p}, A^{\mu}_{n,q}$	$H(1)^2 + 1 + 1$	H^{12} λ^{2}	
soft	q_q, A_s^μ	$E(\lambda,\lambda,\lambda)$	$E^2\lambda^2$	SCET _{II} : $\lambda = \Lambda/E$ — hadrons ($m{\sim}\Lambda$)
usoft	q_{us}, A^{μ}_{us}	$E(\lambda^2,\lambda^2,\lambda^2)$	$E^2\lambda^4$	$\textbf{Match QCD} \rightarrow \textbf{SCET}_{I} \rightarrow \textbf{SCET}_{II}$

• Can decouple ultrasoft gluons from collinear Lagrangian at leading order in λ

$$\xi_{n,p} = Y_n \, \xi_{n,p}^{(0)}$$
 $A_{n,q} = Y_n \, A_{n,q}^{(0)} \, Y_n^{\dagger}$ $Y_n = P \exp \left[ig \int_{-\infty}^x ds \, n \cdot A_{us}(ns) \right]$

Nonperturbative usoft effects made explicit through factors of Y_n in operators New symmetries: collinear / soft gauge invariance

• Simplified / new $(B \to D\pi, \pi \ell \bar{\nu})$ proofs of factorization theorems

[Bauer, Pirjol, Stewart]

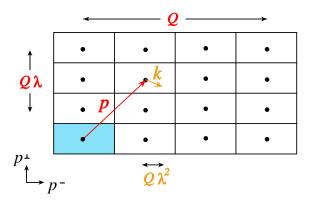
Modes, overcounting, zero-bin

In a Wilsonian OPE, in the sense of scale separation, everything has to factorize May be difficult to see with continuum methods, factored objects can be complicated; e.g., strong phase in factorization for $B \to D^{(*)0} M_2^0$ decay [Mantry, Pirjol, Stewart]

Often have to sum over collinear fields' labels and integrate over residual momenta

$$\sum_{p} \int \mathrm{d}k \to \int \mathrm{d}p$$
 sum excludes zero-bin $(p=0)$, where physics is described by soft mode

Straightforward with hard cutoff, but less so in continuum (want to use dim. reg., etc.)



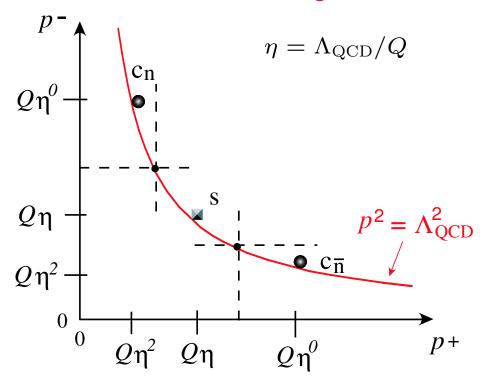
 MS explained how to add and subtract zero-bin to make computations convenient and avoid double counting:

$$\sum_{\text{labels}\neq 0} \int dk \to \int dp - \left(\int dk\right)_{p=0}$$

[Manohar & Stewart, hep-ph/0605001]

MS (zero-bin) factorization in $SCET_{\rm II}$

- IR divergencies in perturbation theory cancel or cut off by nonperturbative physics
 When several fields describe same particle, special care to avoid double counting
- Modes and momentum regions in SCET_{II}



Possible double counting: zero-bin of collinear modes described by soft fields

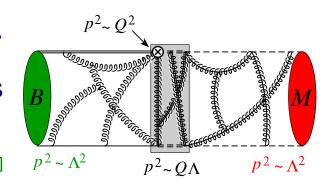
The c_n , s, $c_{\bar{n}}$ modes have comparable invariant masses, but only interact via larger p^2 modes ("rapidity gaps")

Distinguish between modes by p^-/p^+ and keep boost inversion symmetry

Semileptonic $B \to \pi \, (\rho)$ form factors

Old issues: endpoint singularities, Sudakov effects, etc.

At leading order in Λ/Q , to all orders in α_s , form factors for $q^2 \ll m_B^2$ written as $(Q=E,m_b;$ omit μ -dep's)



[Beneke & Feldmann; Bauer, Pirjol, Stewart; Becher, Hill, Lange, Neubert]

$$F(Q) = C_k(Q) \zeta_k(Q) + \frac{m_B f_B f_M}{4E^2} \int dz dx dr_+ T(z, Q) J(z, x, r_+, Q) \phi_M(x) \phi_B(r_+)$$

Matrix elements of distinct $\int d^4x T \left[J^{(n)}(0) \mathcal{L}_{\xi q}^{(m)}(x) \right]$ terms (turn spectator $q_{us} \to \xi$)

- Symmetry: first term obeys form factor relations (10 \Rightarrow 3 universal fn's) [Charles et al.] Relative size? SCET: 1st \sim 2nd QCDF: 2nd $\sim \alpha_s \times$ (1st) PQCD: 1st \sim 0
- Zero-bin factorization: $\zeta_k(Q) \sim J_{ij}(x, z_k, k_\ell^+) \otimes \phi_\pi^i(z_k) \phi_B^j(k_\ell^+)$
 - $\Rightarrow \zeta_k$ formally contains $\alpha_s(\mu_i)$, just like second term

[Manohar & Stewart, hep-ph/0605001]

Charmless B decays

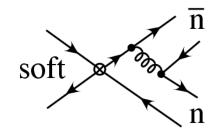
Charmless $B o M_1 M_2$ decays

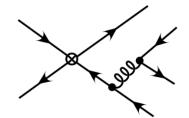
BBNS (QCDF) factorization proposal:

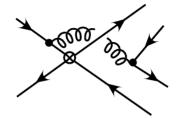
$$\langle \pi \pi | O_i | B \rangle \sim F_{B \to \pi} T(x) \otimes \phi_{\pi}(x) + T(\xi, x, y) \otimes \phi_B(\xi) \otimes \phi_{\pi}(x) \otimes \phi_{\pi}(y)$$

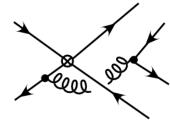
The KLS (pQCD) formulae involve only ϕ_B , ϕ_{M_1} , ϕ_{M_2} , with k_{\perp} dependence

- SCET: $\langle \pi\pi|O_i|B\rangle \sim \sum_{ij} T(x,y) \otimes \left[J_{ij}(x,z_k,k_\ell^+) \otimes \phi_\pi^i(z_k) \phi_B^j(k_\ell^+)\right] \otimes \phi_\pi(y)$
- Weak annihilation (WA) gives power suppressed (Λ/E) corrections









Yields convolution integrals of the form:
$$\int_0^1 \frac{\mathrm{d}x}{x^2} \, \phi_\pi(x) \,, \qquad \phi_\pi(x) \sim 6x(1-x)$$

BBNS: interpret as IR sensitivity \Rightarrow modelled by complex parameters

KLS: rendered finite by k_{\perp} , but sizable and complex contributions

Subtractions for divergent convolutions

• Choose interpolating field for pion to be made of collinear quarks $(p_i^- \neq 0)$

$$\langle \pi_n^+(p_\pi) | \bar{u}_{n,p_1^-} \, \bar{\eta} \gamma_5 \, d_{n,-p_2^-} | 0 \rangle = -i f_\pi \, \delta(\bar{n} \cdot p_\pi - p_1^- - p_2^-) \, \phi_\pi(x_1, x_2, \mu)$$

Zero-bin: $p_i^- \neq 0$ (collinear quark with $p_i^- = 0$ is not a collinear quark)

Divergence in $\int_0^1 \phi_\pi(x)/x^2$ related to one of the quarks becoming soft near x=0

• Zero-bin ensures there is no contribution from $x_i = p_i^-/(\bar{n} \cdot p_\pi) \sim 0$

Subtractions implied by zero-bin depend on the singularity of integrals, e.g.:

$$\int_0^1 dx \, \frac{1}{x^2} \, \phi_{\pi}(x,\mu) \quad \Rightarrow \quad \int_0^1 dx \, \frac{\phi_{\pi}(x,\mu) - x \, \phi_{\pi}'(0,\mu)}{x^2} \, + \phi_{\pi}'(0,\mu) \ln\left(\frac{\bar{n} \cdot p_{\pi}}{\mu_{-}}\right)$$

$$= \text{finite}$$

Weak annihilation

• Match onto six-quark operators of the form (only hard contributions, no jet scale):

$$O_{1d}^{(ann)} = \sum_{q} \underbrace{\left[\bar{d}_s \Gamma_s \, b_v\right]}_{\text{gives } f_B} \underbrace{\left[\bar{u}_{\bar{n},\omega_2} \Gamma_{\bar{n}} \, q_{\bar{n},\omega_3}\right]}_{\pi \text{ in } \bar{n} \text{ direction}} \underbrace{\left[\bar{q}_{n,\omega_1} \Gamma_n \, u_{n,\omega_4}\right]}_{\pi \text{ in } n \text{ direction}}$$

[Arnesen, ZL, Rothstein, Stewart]

Similar to leading order contributions to the amplitude

- At leading nonvanishing order in Λ/m_b and α_s :
 - Real, because there is no way for these matrix elements to be complex
 - Calculable, and do not introduce nonperturbative inputs beyond those that occur in leading order factorization formula
- Constrain parameters in QCDF and pQCD to be real, which have been taken to be complex

 fewer unknowns
- Can try to disentangle charm penguin amplitudes from weak annihilation, etc.

"Chirally enhanced" terms

• Terms proportional to $m_\pi^2/(m_u+m_d)$ or $m_K^2/(m_u+m_s)$ (from using the Dirac eq.)

Isolating these terms relies on assumptions about three-body wave functions

- Can be understood in SCET_{II} as operators with a \mathcal{P}_{\perp} between collinear quarks $\Gamma_s \otimes \Gamma_{\bar{n}} \otimes \Gamma_n \mathcal{P}_{\perp}^{\beta}$
- Chirally enhanced WA power suppressed (compared to leading WA) and depends on the intermediate jet scale

Can indeed cause some transverse polarization in $B \rightarrow VV$

Real at leading order (same holds for chirally enhanced hard scattering)

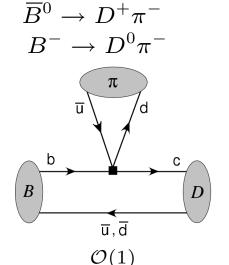
Conclusions

- Theory of charmless two-body decays continues to develop rapidly
- Zero-bin factorization ⇒ no divergent convolutions
 Annihilation and "chirally enhanced" terms are calculable and real
- More work & experience with data needed to understand behavior of expansions Why some predictions work at $\lesssim 10\%$ level, while others receive $\gtrsim 30\%$ corrections
- We have the tools to try to address the questions

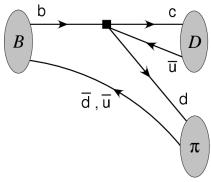
Backup slides

$B o D^{(*)} \pi$ decays in SCET

Decays to π^{\pm} : proven that $A \propto \mathcal{F}^{B \to D} f_{\pi}$ is the leading order prediction Also holds in large N_c , works at 5–10% level, need precise data to test mechanism

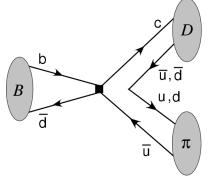


$$B^- \to D^0 \pi^ \overline{B}{}^0 \to D^0 \pi^0$$



$$\mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)$$

$$\overline{B}^0 \to D^+ \pi^ \overline{B}^0 \to D^0 \pi^0$$



$$\mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)$$

$$Q = \{E_{\pi}, m_{b,c}\}$$

SCET:

Predictions:
$$\frac{\mathcal{B}(B^- \to D^{(*)0}\pi^-)}{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\pi^-)} = 1 + \mathcal{O}(\Lambda_{\rm QCD}/Q) \,,$$

[Beneke, Buchalla, Neubert, Sachrajda; Bauer, Pirjol, Stewart] data: $\sim 1.1 \pm 0.25$

$$rac{\mathcal{B}(\overline{B}^0 o D^0\pi^0)}{\mathcal{B}(\overline{B}^0 o D^{*0}\pi^0)} = 1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)\,,$$

Unforeseen before SCET

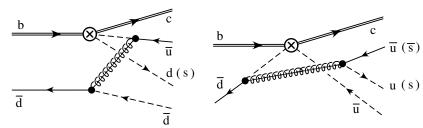
data: $\sim 1.8 \pm 0.2$ (also for ρ)

 $\Rightarrow \mathcal{O}(30\%)$ power corrections

[Mantry, Pirjol, Stewart]

Color suppressed $B o D^{(*)0} \pi^0$ decays

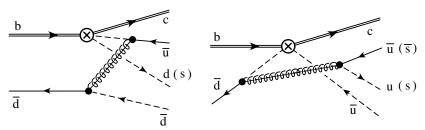
Single class of power suppressed SCET_I operators: $T\{\mathcal{O}^{(0)},\mathcal{L}^{(1)}_{\xi q},\mathcal{L}^{(1)}_{\xi q}\}$ [Mantry, Pirjol, Stewart]



$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} \, T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

Color suppressed $B o D^{(*)0} \pi^0$ decays

Single class of power suppressed SCET_I operators: $T\{\mathcal{O}^{(0)},\mathcal{L}^{(1)}_{\xi q},\mathcal{L}^{(1)}_{\xi q}\}$ [Mantry, Pirjol, Stewart]



$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} \, T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

Not your garden variety factorization formula... $S^{(i)}(k_1^+,k_2^+)$ know about n

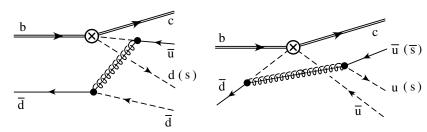
$$S^{(0)}(k_1^+, k_2^+) = \frac{\langle D^0(v') | (\bar{h}_{v'}^{(c)} S) \not n P_L(S^\dagger h_v^{(b)}) (\bar{d}S)_{k_1^+} \not n P_L(S^\dagger u)_{k_2^+} | \bar{B}^0(v) \rangle}{\sqrt{m_B m_D}}$$

Separates scales, allows to use HQS without $E_\pi/m_c=\mathcal{O}(1)$ corrections

$$(i = 0, 8 \text{ above})$$

Color suppressed $B o D^{(*)0} \pi^0$ decays

• Single class of power suppressed SCET_I operators: $T\{\mathcal{O}^{(0)},\mathcal{L}_{\xi q}^{(1)},\mathcal{L}_{\xi q}^{(1)}\}$ [Mantry, Pirjol, Stewart]

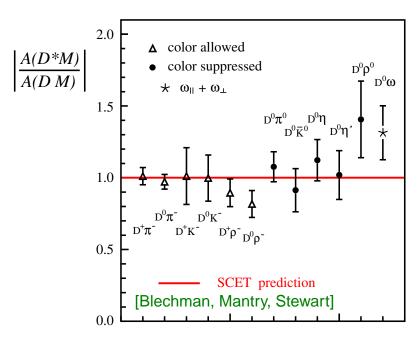


$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} \, T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

- Ratios: the $\triangle = 1$ relations follow from naive factorization and heavy quark symmetry
 - The = 1 relations do not a prediction of SCET not foreseen by model calculations

Also predict equal strong phases between amplitudes to $D^{(*)}\pi$ in I=1/2 and 3/2

Data: $\delta(D\pi) = (30 \pm 5)^{\circ}$, $\delta(D^*\pi) = (31 \pm 5)^{\circ}$



Baryons: $\Lambda_b \to \Lambda_c \pi$ and $\Sigma_c \pi$

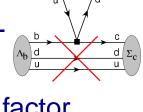
Factorization: holds for $m_Q \gg \Lambda_{\rm QCD}$ (not in large N_c)

$$\frac{\Gamma(\Lambda_b \to \Lambda_c \pi^-)}{\Gamma(\overline{B}^0 \to D^{(*)} + \pi^-)} \simeq 1.8 \left(\frac{\zeta(w_{\text{max}}^{\Lambda})}{\xi(w_{\text{max}}^{D^{(*)}})}\right)^2$$

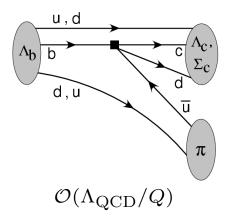
CDF:
$$\Gamma(\Lambda_b \to \Lambda_c^+ \pi^-)/\Gamma(\overline{B}{}^0 \to D^+ \pi^-) \approx 2$$

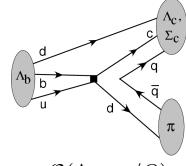
multiplets	s_l	$I(J^P)$			
Λ_c	0	$0(\frac{1}{2}^+)$			
Σ_c, Σ_c^*	1	$1(\frac{1}{2}^+), 1(\frac{3}{2}^+)$			
$\Sigma_c(2455), \Sigma_c^*(2520)$					

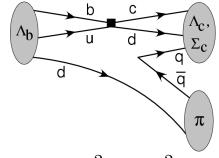
Can't address in naive factorization, since



 $\Lambda_b \to \Sigma_c$ form factor vanishes by isospin







[Leibovich, ZL, Stewart, Wise]

$$\mathcal{O}(\Lambda_{\rm QCD}^2/Q^2)$$

• Prediction:
$$\frac{\Gamma(\Lambda_b \to \Sigma_c^* \pi)}{\Gamma(\Lambda_b \to \Sigma_c \pi)} = 2 + \mathcal{O}\left[\Lambda_{\rm QCD}/Q\,,\,\alpha_s(Q)\right] = \frac{\Gamma(\Lambda_b \to \Sigma_c^{*0} \rho^0)}{\Gamma(\Lambda_b \to \Sigma_c^0 \rho^0)}$$

Can avoid π^0 's from $\Lambda_b \to \Sigma_c^{(*)0} \pi^0 \to \Lambda_c \pi^- \pi^0$ or $\Lambda_b \to \Sigma_c^{(*)+} \pi^- \to \Lambda_c \pi^0 \pi^-$

